High dimensional statistics

Part 2: Shrinkage and Stein's phenomenon

Hugo Richard (research.hugo.richard@gmail.com)

ENPC - February 2022

Available on previous slides

- Gaussian sequence model: $\mathbf{y} \in \mathbb{R}^n$, $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2 I_n)$, we want to estimate $\boldsymbol{\mu}$.
- Linear estimators $\hat{\mu}(\mathbf{y}) = A\mathbf{y}$, $(A = I_n \text{ is the ML solution})$
- Error $\mathbb{E}_{\mathbf{y}}[\|\hat{\boldsymbol{\mu}}(\mathbf{y}) \boldsymbol{\mu}\|^2]$
- Akaike information criterion (AIC) for linear estimators
- Taking $A = sI_n$ and minimizing with respect to s gives $\hat{\mu}(\mathbf{y}) = (1 \frac{n\sigma^2}{\|\mathbf{y}\|^2})\mathbf{y}$

A small recap of Stein's phenomenon

On the board last time

- AIC for non-linear estimators = Stein's unbiased risk estimate
- Apply it to estimators of the form $\hat{\mu}(\mathbf{y}) = (1 \frac{n\sigma^2}{\|\mathbf{y}\|^2})\mathbf{y}$
- Conclude that MLE is not admissible

Let's re-do these steps.

Stein's unbiased risk estimate

Gaussian integration by part

Lemma (Scalar to scalar function, standard Gaussian) if $z \sim \mathcal{N}(0,1)$ and $f: \mathcal{R} \to \mathcal{R}$ is differentiable such that $\mathbb{E}[|f(z)|] < \infty$ and $\mathbb{E}[|f'(z)|] < \infty$ then $\mathbb{E}[zf(z)] = \mathbb{E}[f'(z)]$.

Lemma (Scalar to scalar function, standard Gaussian) if $z \sim \mathcal{N}(0,1)$ and $f: \mathcal{R} \to \mathcal{R}$ is differentiable such that $\mathbb{E}[|f(z)|] < \infty$ and $\mathbb{E}[|f'(z)|] < \infty$ then $\mathbb{E}[zf(z)] = \mathbb{E}[f'(z)]$.

Proof.

$$\mathbb{E}[zf(z)1(z>0)] = \int_0^\infty z\phi(z)(\int_0^z f'(t)dt)dz \tag{1}$$

$$= \int_0^\infty f'(t) \left(\int_t^\infty z \phi(z) dz \right) dt \qquad (2)$$

$$= \int_0^\infty f'(t)\phi(t)dt \tag{3}$$

$$= \mathbb{E}[1(z>0)f'(z)] \tag{4}$$

Do the same with z < 0.

Lemma (Scalar to scalar function, scaled Gaussian) if $z \sim \mathcal{N}(0, \sigma^2)$ and $f: \mathcal{R} \to \mathcal{R}$ is differentiable such that $\mathbb{E}[|f(z)|] < \infty$ and $\mathbb{E}[|f'(z)|] < \infty$ then $\mathbb{E}[zf(z)] = \sigma^2 \mathbb{E}[f'(z)].$

Lemma (Scalar to scalar function, scaled Gaussian) if $z \sim \mathcal{N}(0, \sigma^2)$ and $f : \mathcal{R} \to \mathcal{R}$ is differentiable such that $\mathbb{E}[|f(z)|] < \infty$ and $\mathbb{E}[|f'(z)|] < \infty$ then $\mathbb{E}[zf(z)] = \sigma^2 \mathbb{E}[f'(z)]$.

Proof.

For $\sigma \neq 1$, take $g = z/\sigma$ and $\tilde{f}(u) = f(\sigma u)$

$$\mathbb{E}[g\tilde{f}(g)] = \mathbb{E}[\tilde{f}'(g)] \tag{5}$$

$$\iff \mathbb{E}[zf(z)] = \sigma^2 \mathbb{E}[f'(z)]$$
 (6)

Lemma (vector to scalar function)

if $\mathbf{v} \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ and $g: \mathcal{R}^n \to \mathcal{R}$ is differentiable, integrable and so are the partial derivatives of g, then:

$$\mathbb{E}[(y_i - \mu_i)g(\mathbf{y})] = \sigma^2 \mathbb{E}[\frac{\partial g}{\partial y_i}(\mathbf{y})]$$

Lemma (vector to scalar function)

if $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2 I_n)$ and $g: \mathcal{R}^n \to \mathcal{R}$ is differentiable, integrable and so are the partial derivatives of g, then:

$$\mathbb{E}[(y_i - \mu_i)g(\mathbf{y})] = \sigma^2 \mathbb{E}[\frac{\partial g}{\partial y_i}(\mathbf{y})]$$

Take
$$z = (y_1 - \mu_1)$$
 and $f(z) = g(\mu_1 + z, y_2, \dots, y_n)$.

$$\mathbb{E}_z[zf(z)|y_{2:n}] = \sigma^2 \mathbb{E}_z[f'(z)|y_{2:n}]$$
(7)

$$\Rightarrow \mathbb{E}_{y_1}[(y_1 - \mu_1)g(\mathbf{y})|y_{2:n}] = \sigma^2 \mathbb{E}_{y_1}[\frac{\partial g}{\partial y_1}(\mathbf{y})|y_{2:n}]$$
(8)

$$\Rightarrow \mathbb{E}_{y_{2:n}}[\mathbb{E}_{y_1}[(y_1 - \mu_1)g(\mathbf{y})|y_{2:n}]] = \sigma^2 \mathbb{E}_{y_{2:n}}[\mathbb{E}_{y_1}[\frac{\partial g}{\partial y_1}(\mathbf{y})|y_{2:n}]]$$

Lemma (vector to vector function)

if $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2 I_n)$ and $\mathbf{f} : \mathcal{R}^n \to \mathcal{R}^n$ is such that all coordinate functions are integrable with integrable partial derivatives then

$$\mathbb{E}[(\mathbf{y} - \boldsymbol{\mu})^{\top} \mathbf{f}(\mathbf{y})] = \sigma^2 \mathbb{E}[\sum_{i=1}^n \frac{\partial f_i}{\partial y_i}(\mathbf{y})]$$

Lemma (vector to vector function)

if $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2 I_n)$ and $\mathbf{f} : \mathcal{R}^n \to \mathcal{R}^n$ is such that all coordinate functions are integrable with integrable partial derivatives then $\mathbb{E}[(\mathbf{y} - \boldsymbol{\mu})^{\top} \mathbf{f}(\mathbf{y})] = \sigma^2 \mathbb{E}[\sum_{i=1}^n \frac{\partial f_i}{\partial v_i}(\mathbf{y})]$

$$\mathbb{E}[(\mathbf{y} - \boldsymbol{\mu})^{\top} \mathbf{f}(\mathbf{y})] = \sum_{i=1}^{n} \mathbb{E}[(y_i - \mu_i) f_i(\mathbf{y})]$$
(9)

$$= \sum_{i=1}^{n} \sigma^{2} \mathbb{E}\left[\frac{\partial f_{i}}{\partial y_{i}}(\mathbf{y})\right] \tag{10}$$

Stein's unbiased risk estimate

Theorem

Take
$$\hat{\boldsymbol{\mu}} = \mathbf{f}(\mathbf{y})$$
 and $\hat{r}_f = \|\mathbf{y} - \mathbf{f}(\mathbf{y})\|^2 + 2\sigma^2 \sum_{i=1}^n \frac{\partial f_i}{\partial y_i}(\mathbf{y}) - n\sigma^2$, then $\mathbb{E}[\hat{r}_f] = \mathbb{E}[\|\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}\|^2]$

$$\mathbb{E}[\|\hat{\boldsymbol{\mu}} - \mathbf{y} + \mathbf{y} - \boldsymbol{\mu}\|^2] \tag{11}$$

$$= \mathbb{E}[\|\hat{\boldsymbol{\mu}} - \mathbf{y}\|^2 + \|\mathbf{y} - \boldsymbol{\mu}\|^2 + 2\langle \hat{\boldsymbol{\mu}} - \mathbf{y}|\mathbf{y} - \boldsymbol{\mu}\rangle]$$
(12)

$$= \mathbb{E}[\|\mathbf{f}(\mathbf{y}) - \mathbf{y}\|^2 + \|\epsilon\|^2 + 2\langle \hat{\boldsymbol{\mu}} | \epsilon \rangle - 2\langle \mathbf{y} | \epsilon \rangle]$$
 (13)

$$= \mathbb{E}[\|\mathbf{y} - \mathbf{f}(\mathbf{y})\|^2 + n\sigma^2 + 2\sigma^2 \sum_{i=1}^n \frac{\partial f_i}{\partial y_i}(\mathbf{y}) - 2n\sigma^2]$$
 (14)

Theorem

Take
$$\mathbf{f}(\mathbf{y}) = (1 - \frac{\sigma^2 q}{\|\mathbf{y}\|^2})\mathbf{y}$$
 Then
$$\mathbb{E}[\|\hat{\mu} - \mu\|^2] = \mathbb{E}[\hat{r}_f] = n\sigma^2 - \mathbb{E}[\frac{\sigma^4 q}{\|\mathbf{y}\|^2}(2n - q - 4)]$$

•
$$\|\mathbf{y} - \mathbf{f}(\mathbf{y})\|^2 = \|\frac{\sigma^2 q}{\|\mathbf{y}\|^2} \mathbf{y}\|^2 = \frac{\sigma^4 q^2}{\|\mathbf{y}\|^2}$$

Theorem

Take
$$\mathbf{f}(\mathbf{y}) = (1 - \frac{\sigma^2 q}{\|\mathbf{y}\|^2})\mathbf{y}$$
 Then
$$\mathbb{E}[\|\hat{\mu} - \mu\|^2] = \mathbb{E}[\hat{r}_f] = n\sigma^2 - \mathbb{E}[\frac{\sigma^4 q}{\|\mathbf{y}\|^2}(2n - q - 4)]$$

•
$$\|\mathbf{y} - \mathbf{f}(\mathbf{y})\|^2 = \|\frac{\sigma^2 q}{\|\mathbf{y}\|^2} \mathbf{y}\|^2 = \frac{\sigma^4 q^2}{\|\mathbf{y}\|^2}$$

$$\bullet \quad \frac{\partial f_i}{\partial y_i}(\mathbf{y}) = \left(1 - \frac{\sigma^2 q}{\|\mathbf{y}^2\|}\right) + \frac{2\sigma^2 q y_i^2}{\|\mathbf{y}\|^4}$$

Theorem

Take
$$\mathbf{f}(\mathbf{y}) = (1 - \frac{\sigma^2 q}{\|\mathbf{y}\|^2})\mathbf{y}$$
 Then
$$\mathbb{E}[\|\hat{\mu} - \mu\|^2] = \mathbb{E}[\hat{r}_f] = n\sigma^2 - \mathbb{E}[\frac{\sigma^4 q}{\|\mathbf{y}\|^2}(2n - q - 4)]$$

•
$$\|\mathbf{y} - \mathbf{f}(\mathbf{y})\|^2 = \|\frac{\sigma^2 q}{\|\mathbf{y}\|^2} y\|^2 = \frac{\sigma^4 q^2}{\|\mathbf{y}\|^2}$$

•
$$2\sigma^2 \sum_{i=1}^n \frac{\partial f_i}{\partial y_i}(\mathbf{y}) = 2n\sigma^2 \left(1 - \frac{\sigma^2 q}{\|\mathbf{y}\|^2}\right) + \frac{4\sigma^2 q}{\|\mathbf{y}\|^2} = 2n\sigma^2 - \frac{\sigma^4 q}{\|\mathbf{y}\|^2} (2n - 4)$$

Theorem

Take
$$\mathbf{f}(\mathbf{y}) = (1 - \frac{\sigma^2 q}{\|\mathbf{y}\|^2})\mathbf{y}$$
 Then

$$\mathbb{E}[\|\hat{\mu} - \mu\|^2] = \mathbb{E}[\hat{r}_f] = n\sigma^2 - \mathbb{E}[\frac{\sigma^4 q}{\|\mathbf{y}\|^2}(2n - q - 4)]$$

•
$$\|\mathbf{y} - \mathbf{f}(\mathbf{y})\|^2 = \|\frac{\sigma^2 q}{\|\mathbf{y}\|^2} y\|^2 = \frac{\sigma^4 q^2}{\|\mathbf{y}\|^2}$$

$$2\sigma^2 \sum_{i=1}^n \frac{\partial f_i}{\partial y_i}(\mathbf{y}) = 2n\sigma^2 \left(1 - \frac{\sigma^2 q}{\|\mathbf{y}\|^2}\right) + \frac{4\sigma^2 q}{\|\mathbf{y}\|^2} = 2n\sigma^2 - \frac{\sigma^4 q}{\|\mathbf{y}\|^2} (2n - 4)$$

•
$$\hat{r}_f = \|\mathbf{y} - \mathbf{f}(\mathbf{y})\|^2 + 2\sigma^2 \sum_{i=1}^n \frac{\partial f_i}{\partial y_i}(\mathbf{y}) - n\sigma^2 = n\sigma^2 - \frac{\sigma^4 q}{\|\mathbf{y}\|^2} (2n - q - 4)$$